

Classification Analyses of fMRI Data Predict Perceived Color

Naiti S. Bhatt^{1,2}, Katherine E.M. Tregillus¹, and Stephen A. Engel¹

¹Department of Psychology, University of Minnesota, ²Keck Science Department, Scripps College

Background

The McCollough Effect is a long lasting color illusion. We are using fMRI to uncover its neural bases.

Pre-Adapt

Adapt F

Post-Adapt

Questions:

- 1. Can we determine which color was presented based on the pattern of activation?
- 2. What is the best way to perform this classification analysis?

Classification Analysis

Input: patterns of activity across voxels for each condition

Output: Best guess of condition

fMRI responses measured in 6 conditions

Trained classifiers

LDA, Linear SVM, Quadratic SVM

Classifying:

- Black-and-white versus color
- Across different orientations
- Across different scanning sessions

Can we classify color?

4 participants, ~2000 visual cortex voxels/participant

Yes! All methods perform above chance (50%)

Can we classify color independent of orientation?

Yes! We can train using only diagonal stimuli and test on cardinal stimuli.

Can we train across scans?

 1 participant with data from two scans, unaffected by McCollough Effect

Yes! We can train on data from one scan and accurately classify data from another.

Does the classifier mistake illusory colors as real?

• 1 participant with pre-adaptation and postadaptation scans, with McCollough Effect

What is the best way to classify?

Which classifier works best?

Mean Validation Accuracy Nean Validation Accuracy Nean Validation Accuracy LDA Linear SVM Quadratic SVM

LDA consistently performs better

How many folds of cross validation?

10-fold cross validation suffices

Conclusions

- We can classify color vs black and white based on patterns of fMRI activity
- LDA is the best classification method for our data
- Classifier may show effects of the illusion, which will allow us to localize neural bases

Sponsored by NSF REU 1757390: Neuroimaging for Cognitive Neuroscience Pl's: Stephen A. Engel & Cheryl A. Olman